Rayleigh Waves in a Homogeneous Magneto-Thermo Voigt-Type Viscoelastic Half-Space under Initial Surface Stresses
author
Abstract:
This paper deals with the propagation of magneto-thermo Rayleigh waves in a homogeneous viscoelastic half-space under initial stress. It has been observed that velocity of Rayleigh waves depends on viscosity, magnetic field, temperature and initial stress of the half-space. The frequency equation for Rayleigh waves under the effect of magnetic field, stress and temperature for both viscoelastic and elastic medium is first obtained by using classical theory of thermoelasticity and then computed numerically. The variation of phase velocity of Rayleigh waves with respect to initial hydrostatic stress in viscoelastic and elastic half-space is shown graphically. In the absence of various parameters of the medium, the obtained results are in agreement with classical results given by Caloi and Lockett.
similar resources
Rayleigh waves in a viscoelastic half-space under initial hydrostatic stress in presence of the temperature field
The effect of the temperature and initial hydrostatic stress has been shown on the propagation of Rayleigh waves in a viscoelastic half-space. It has been explained how the velocity of Rayleigh waves depends not only on the parameters pertaining to the viscoelastic properties of the half-space, but on the temperature and the initial hydrostatic stress of the half-space also. The variations of t...
full textReflection of Waves in a Rotating Transversely Isotropic Thermoelastic Half-space Under Initial Stress
The present paper concerns with the effect of initial stress on the propagation of plane waves in a rotating transversely isotropic medium in the context of thermoelasticity theory of GN theory of type-II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasi-longitudinal wave. The slowest of them is a thermal wave. ...
full textInfluences of Heterogeneities and Initial Stresses on the Propagation of Love-Type Waves in a Transversely Isotropic Layer Over an Inhomogeneous Half-Space
In the present paper, we are contemplating the influences of heterogeneities and pre-stresses on the propagation of Love-type waves in an initially stressed heterogeneous transversely isotropic layer of finite thickness lying over an inhomogeneous half space. The material constants and pre-stress have been taken as space dependent and arbitrary functions of depth in the respective media. To sim...
full textInfluences of Rotation, Magnetic Field, Initial Stress, and Gravity on Rayleigh Waves in a Homogeneous Orthotropic Elastic Half-Space
The aim of this paper is to investigate the influences of rotation, magnetic field, initial stress, and gravity field on Rayleigh waves in a homogeneous orthotropic elastic medium. The government equations is solved by Lame’s potential and obtained the frequency equation which determines the velocity of Rayleigh waves, including rotation, initial stress, gravity field, and magnetic field, in a ...
full textVoigt Airy surface magneto plasmons.
We present a basic theory on Airy surface magneto plasmons (SMPs) at the interface between a dielectric layer and a metal layer (or a doped semiconductor layer) under an external static magnetic field in the Voigt configuration. It is shown that, in the paraxial approximation, the Airy SMPs can propagate along the surface without violating the nondiffracting characteristics, while the ballistic...
full textRayleigh Surface Waves In A Transversely Isotropic Microstretch Elastic Solid Half Space
The linear governing equations of a transversely isotropic microstretch elastic solid medium are formulated and solved for surface wave solutions. The appropriate solutions satisfying the radiation conditions are applied to the required boundary conditions at the free surface of the halfspace of the medium. A frequency equation is obtained for Rayleigh surface wave in the medium. The non-dimens...
full textMy Resources
Journal title
volume 7 issue 3
pages 255- 267
publication date 2015-09-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023